

The diagram shows eight circles of two different sizes. The circles are 17. arranged in concentric pairs so that the centres form a square. Each larger circle touches one other larger circle and two smaller circles. The larger circles have radius 1. What is the radius of each smaller circle?

A $\frac{1}{3}$ B $\frac{2}{5}$ C $\sqrt{2}-1$ D $\frac{1}{2}$ E $\frac{1}{2}\sqrt{2}$

©UKMT

17. Let the radius of each of the smaller circles be r and let the centres of the circles be A, B, C C and D in order. We are given that ABCD is a square. When two circles touch externally, the distance between their centres equals the sum of their radii. Hence AB and BC have length r+1 and AC has length 1+1=2. By Pythagoras' Theorem $(r+1)^2+(r+1)^2=2^2$, so $2(r+1)^2=2^2=4$ and therefore $(r+1)^2=2$. Square rooting both sides gives $r+1=\sqrt{2}$, as we must take the positive root, and so $r=\sqrt{2}-1$.