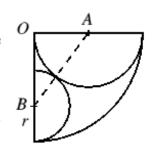


The diagram shows a quadrant of radius 2, and two touching 19. semicircles. The larger semicircle has radius 1. What is the radius of the smaller semicircle?

A $\frac{\pi}{6}$ B $\frac{\sqrt{3}}{2}$ C $\frac{1}{2}$ D $\frac{1}{\sqrt{3}}$ E $\frac{2}{3}$



1489

©UKMT

19. Let the centre of the quadrant be O, the centre of the larger Е semicircle be A and the centre of the smaller semicircle be B. Let the radius of the smaller semicircle be r. It is given that OA = 1. The common tangent to the two semicircles at the point of contact makes an angle of 90° with the radius of each semicircle. Therefore the line AB passes through the point of contact, as $2 \times 90^{\circ} = 180^{\circ}$ and angles on a straight line sum to 180°. So the line AB has length r + 1. This is the hypotenuse of the right-angled triangle *OAB* in which OA = 1 and OB = 2 - r. By Pythagoras' Theorem $(2 - r)^2 + 1^2 = (r + 1)^2$, so $4 - 4r + r^2 + 1 = r^2 + 2r + 1$ and therefore 4 = 6r and so $r = \frac{2}{3}$.

