

The diagram shows two different semicircles inside a square with 23. sides of length 2. The common centre of the semicircles lies on a diagonal of the square.

What is the total shaded area?

Απ

B $6\pi(3-2\sqrt{2})$ C $\pi\sqrt{2}$

D $3\pi(2-\sqrt{2})$ E $8\pi(2\sqrt{2}-3)$

1093

©UKMT

23. В Let r_1 and r_2 represent the radii of the smaller and larger semicircles respectively. A vertical line through the common centre of the semicircles gives $r_1 + r_2 = 2 \dots (1)$. Also, together with the diameter of the larger semicircle, this line forms a right-angled, isosceles

triangle giving $\sin 45^\circ = \frac{r_1}{r_2}$. Hence $r_2 = \sqrt{2r_1} \dots (2)$.

Substituting (2) into (1) gives $(1 + \sqrt{2})r_1 = 2$ so that $r_1 = 2(\sqrt{2} - 1)$.

Therefore $r_2 = 2\sqrt{2}(\sqrt{2} - 1)$.

Hence the total shaded area is $\frac{1}{2}\pi(r_1^2 + r_2^2) = \frac{1}{2}\pi[4(\sqrt{2} - 1)^2 + 8(\sqrt{2} - 1)^2] = 6\pi(3 - 2\sqrt{2}).$