

22. If $x^2 - px - q = 0$, where p and q are positive integers, which of the following could not equal x^3 ?

A 4x + 3

B 8x + 5 C 8x + 7

D 10x + 3

E 26x + 5

1092

©UKMT

Since $x^2 - px - q = 0$, it follows that $x^3 = px^2 + qx$. 22. В

But $x^2 = px + q$ and so $x^3 = p(px + q) + qx$, ie $x^3 = (p^2 + q)x + pq$.

The three possible values shown for pq are 3, 5 and 7.

If pq = 3, $p^2 + q = 1^2 + 3 = 4$ or $p^2 + q = 3^2 + 1 = 10$. Hence 4x + 3 and 10x + 3 could equal x^3 .

If pq = 7, we may take p = 1, q = 7 to get $p^2 + q = 1^2 + 7 = 8$. Hence 8x + 7could equal x^3 .

If pq = 5, we may take p = 5, q = 1 to get $p^2 + q = 5^2 + 1 = 26$. Hence 26x + 5could equal x^3 .

However, the only other possibility, p = 1, q = 5 gives $p^2 + q = 6 \neq 8$. Therefore $8x + 5 \neq x^3$.