

A solid red plastic cube, volume 1 cm³, is painted white on its outside. 24. The cube is cut by a plane passing through the mid-points of various edges, as shown.

What, in cm², is the total red area exposed by the cut?

- A $\frac{3\sqrt{3}}{2}$ B 2 C $\frac{9\sqrt{2}}{5}$ D 3 E $\frac{3(\sqrt{3} + \sqrt{2})}{4}$

0694

©UKMT

Let O be the centre of the cube. Consider triangle ABO: from Pythagoras' Theorem, $OA = AB = BO = \sqrt{(\frac{1}{2})^2 + (\frac{1}{2})^2}$ cm = $\frac{1}{\sqrt{2}}$ cm. So triangle OAB is equilateral. A similar argument may be applied to triangles *OBC*, *OCD* etc. The area of each of these equilateral triangles is $\frac{1}{2} \times \frac{1}{\sqrt{2}} \times \sin 60^{\circ}$ cm², that is $\frac{1}{8}\sqrt{3}$ cm². So the area of hexagon ABCDEF is $6 \times \frac{\sqrt{3}}{8}$ cm². However, the total red area exposed by the cut is twice the area of this hexagon, that is $\frac{3\sqrt{3}}{2}$ cm².