

23. In the diagram, the circle and the two semicircles have radius 1.
What is the perimeter of the square?

A 6 +
$$4\sqrt{2}$$
 B 2 + $4\sqrt{2}$ + $2\sqrt{3}$ C $3\sqrt{2}$ + $4\sqrt{3}$ D 4 + $2\sqrt{2}$ + $2\sqrt{6}$ E 12

0693

©UKMT

23. D Let the vertices of the square be A, B, C, D and the centres of the circle and the two semicircles be P, Q, R, as shown. The midpoint of QR is S. By symmetry, P and S both lie on diagonal BD of square ABCD and the whole figure is symmetrical about BD.

As P is distance 1 from both AD and DC, the length of DP is $\sqrt{2}$. As the circles and semicircles are mutually tangent, PQR is an equilateral triangle of side 2, so the length of PS is $\sqrt{3}$. As angles OBS and BSO are 45° and 90° respectively, triangle SBO is isoscel

QBS and BSQ are 45° and 90° respectively, triangle SBQ is isosceles, so SB = SQ = 1. Hence the length of BD is $\sqrt{2} + \sqrt{3} + 1$. Now the length of the side of the square is $BD \div \sqrt{2}$ so the perimeter of the square is $4 \times (BD \div \sqrt{2})$, that is $2\sqrt{2} \times BD$. So the perimeter is $2\sqrt{2}(\sqrt{2} + \sqrt{3} + 1)$, that is $4 + 2\sqrt{6} + 2\sqrt{2}$.