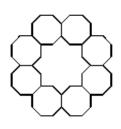


17. Eight identical regular octagons are placed edge to edge in a ring in such a way that a symmetrical star shape is formed by the interior edges.
If each octagon has sides of length 1, what is the area of the star?



A
$$5 + 10\sqrt{2}$$

B
$$8\sqrt{2}$$

C 9 +
$$4\sqrt{2}$$

D
$$16 - 4\sqrt{2}$$

E
$$8 + 4\sqrt{2}$$

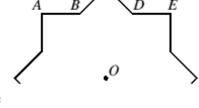
0587

©UKMT

17. E Let A, B, C, D, E be five vertices of the star, as shown.

Then AB = BC = CD = DE = 1. Each exterior angle of a regular octagon is $360^{\circ} \div 8$, that is 45° , so $\angle CBD = \angle CDB = 45^{\circ}$.

Hence $\angle BCD$ is a right angle and we deduce from the symmetry of the figure that each interior angle of the star is either 90° or 225°. The length of BD is $\sqrt{2}$, so the area of the star is the area of a square of side $2 + \sqrt{2}$ plus the area of four



star is the area of a square of side $2 + \sqrt{2}$ plus the area of four congruent triangles with sides 1, 1, $\sqrt{2}$.

The required area, therefore, is $(2 + \sqrt{2})^2 + 4(\frac{1}{2} \times 1 \times 1)$, that is $6 + 4\sqrt{2} + 2$, that is $8 + 4\sqrt{2}$.

Possible alternative ending: Dissect the star into 8 congruent kites such as OBCD. As for a rhombus, the area of a kite is half the product of its diagonals. In this case that is $\frac{1}{2}OC \times BD = \frac{1}{2}(1+\sqrt{2}) \times \sqrt{2} = \frac{1}{2}(\sqrt{2}+2)$. Required area is $4(\sqrt{2}+2)$.