

- In the diagram, the smaller circle touches the larger circle and also passes through its centre. What fraction of the area of the larger circle is outside the smaller circle?
 - $A \frac{2}{3}$
- B $\frac{3}{4}$ C $\frac{4}{5}$ D $\frac{5}{6}$ E $\frac{6}{7}$

1574

©UKMT

Let the radius of the smaller circle be r and so the radius of the larger circle is 2r. The area of the smaller circle is then πr^2 and the area of the larger circle is $\pi \times (2r)^2$ which is 4. $4\pi r^2$. The fraction of the larger circle which is outside the smaller circle is then $\frac{4\pi r^2 - \pi r^2}{4\pi r^2} = \frac{3\pi r^2}{4\pi r^2} = \frac{3}{4}$.

$$\frac{4\pi r^2 - \pi r^2}{4\pi r^2} = \frac{3\pi r^2}{4\pi r^2} = \frac{3}{4}.$$