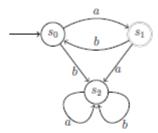
A finite automaton is a mathematical model of a simple computing device. A small finite automaton is illustrated below.



A finite automaton has some finite number of states; the above automaton has three states, labelled s_0 , s_1 and s_2 . The initial state, s_0 , is indicated with an incoming arrow. The automaton receives inputs (e.g. via button presses), which might cause it to change state. In the example, the inputs are a and b. The state changes are illustrated by arrows; for example, if the automaton is in state s_1 and it receives input b, it changes to state s_0 ; if it is in state s_2 and receives either input, it remains in state s_2 . (For each state, there is precisely one out-going arrow for each input.)

Some of the states are defined to be accepting states; in the example, just s_1 is defined to be an accepting state, represented by the double circle. A word is a sequence of inputs. The automaton accepts a word w if that sequence of inputs leads to an accepting state from the initial state. For example, the above automaton accepts the word aba.

- Write down a description of the set of words accepted by the above automaton. A clear but informal description will suffice.
- (ii) Suppose we alter the above automaton by swapping accepting and non-accepting states; i.e. we make s₀ and s₂ accepting, and make s₁ non-accepting. Write down a description of the set of words accepted by this new automaton. Again, a clear but informal description will suffice.
- (iii) Draw an automaton that accepts all words containing an even number (possibly zero) of a's and any number of b's (and no other words).
- (iv) Now draw an automaton that accepts all words containing an even number of a's or an odd number of b's (and no other words).

Let a^n represent n consecutive a's. Let L be the set of all words of the form a^nb^n where n=0,1,2,...; i.e. all words composed of some number of a's followed by the same number of b's. We will show that no finite automaton accepts precisely this set of words.