Suppose that x satisfies the equation

$$x^3 = 2x + 1.$$
 (*)

(i) Show that

$$x^4 = x + 2x^2$$
 and $x^5 = 2 + 4x + x^2$.

(ii) For every integer $k \ge 0$, we can uniquely write

$$x^k = A_k + B_k x + C_k x^2$$

where A_k , B_k , C_k are integers. So, in part (i), it was shown that

$$A_4 = 0, B_4 = 1, C_4 = 2$$
 and $A_5 = 2, B_5 = 4, C_5 = 1.$

Show that

$$A_{k+1} = C_k$$
, $B_{k+1} = A_k + 2C_k$, $C_{k+1} = B_k$.

(iii) Let

$$D_k = A_k + C_k - B_k.$$

Show that $D_{k+1} = -D_k$ and hence that

$$A_k + C_k = B_k + (-1)^k \,.$$

(iv) Let $F_k = A_{k+1} + C_{k+1}$. Show that

$$F_k + F_{k+1} = F_{k+2}$$