3. The lines L_1 and L_2 have equations given by $$L_1: \mathbf{r} = \begin{pmatrix} -7\\7\\1 \end{pmatrix} + \lambda \begin{pmatrix} 2\\0\\-3 \end{pmatrix} \text{ and } L_2: \mathbf{r} = \begin{pmatrix} 7\\p\\-6 \end{pmatrix} + \mu \begin{pmatrix} 10\\-4\\-1 \end{pmatrix}$$ where λ and μ are parameters and p is a constant. The two lines intersect at the point C. - (a) Find - (i) the value of p, - (ii) the position vector of C. (5) (b) Show that the point B with position vector $\begin{pmatrix} -13\\11\\-4 \end{pmatrix}$ lies on L_2 . (1) The point A with position vector $\begin{pmatrix} -7\\7\\1 \end{pmatrix}$ lies on L_1 . (c) Find cos(∠ACB), giving your answer as an exact fraction. (3) The line L_3 bisects the angle ACB. (d) Find a vector equation of L₃. (4)