FP1 Complex Number Questions

(i) Calculate $(2+i\sqrt{5})(\sqrt{5}-i)$. (3 marks) (ii) Hence verify that $\sqrt{5} - i$ is a root of the equation $(2+i\sqrt{5})z = 3z^*$ where z^* is the conjugate of z. (2 marks) The quadratic equation $x^2 + px + q = 0$ in which the coefficients p and q are real, has a complex root $\sqrt{5}-\mathrm{i}\,.$ (i) Write down the other root of the equation. (1 mark) 6 It is given that z = x + iy, where x and y are real numbers. (a) Write down, in terms of x and y, an expression for $(z + i)^*$ where $(z + i)^*$ denotes the complex conjugate of (z + i). (2 marks) Solve the equation (b) $(z+i)^* = 2iz + 1$ giving your answer in the form a + bi. (5 marks) 1 (a) Solve the following equations, giving each root in the form a + bi: (i) $x^2 + 16 = 0$; (2 marks) (ii) $x^2 - 2x + 17 = 0$. (2 marks) (i) Expand $(1+x)^3$. (b) (2 marks) (ii) Express $(1+i)^3$ in the form a+bi. (2 marks) (iii) Hence, or otherwise, verify that x = 1 + i satisfies the equation $x^3 + 2x - 4i = 0$ (2 marks)

- 3 It is given that z = x + iy, where x and y are real numbers.
 - (a) Find, in terms of x and y, the real and imaginary parts of

$$z - 3iz^*$$

where z^* is the complex conjugate of z.

(3 marks)

(b) Find the complex number z such that

$$z - 3iz^* = 16$$

(3 marks)